CHALMERS

UNIVERSITY OF TECHNOLOGY

DIGITALIZATION IN PRODUCTION AND • MAINTENANCE

ANDERS SKOOGH (PhD)

Associate Professor

Industrial and Materials Science

Director of the Production Engineering Master's Program

<u>anders.skoogh@chalmers.se</u>

CHALLENGES AND OPPORTUNITIES

Need for a clear strategy to implement digitalization solutions

Cost of production disturbance ~106 Bn SEK



OEE of industrial equipment \sim 50 %

PRODUCTION SERVICE & MAINTENANCE SYSTEMS

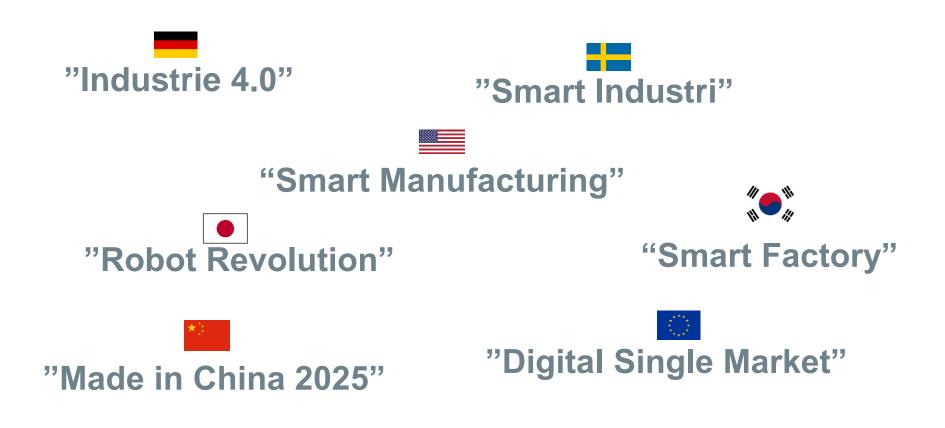
Sets the agenda for Smart Maintenance

Data-driven decisions, human capital, internal and external integration

The link between maintenance and production

Together with industry

Potential



POTENTIAL WITH MODERN MAINTENANCE

Highest-ranked use cases, based on survey responses	Use case type	Impact	Data richness
Predict failure and recommend proactive maintenance for production and moving equipment	Predictive maintenance		1.3 1.0
Optimize complex manufacturing process in real time—determine where to dedicate resources to reduce bottlenecks and cycle time	Operations/logistics optimization (real time)	1	.1 1.0
Predict future demand trends and potential constraints in supply chain	Forecasting	0.8	0.7
Identify design problems in pre-production to reduce ramp-up time to maximum output (i.e., yield ramp)	Predictive analytics	0.6	0.3
Identify root causes for low product yield (e.g., tool-/die-specific issues) in manufacturing	Discover new trends/ anomalies	0.5	0.7

[McKinsey, 2016]

IS SWEDISH INDUSTRY SMART?

	90's (Ljungberg 1998)	2006-2012 (Ylipää et al.)
Planned stops	5%	6,6%
Unplanned stops	12%	9,6%
Set-ups	8%	11,5%
Availability	80%	78,9%
Utilization	77%	80,2%
Quality	99%	96,9%
	55%	51,5%

DATA-DRIVEN MAINTENANCE

Reactive maintenance

- Wait and repair

Preventive maintenance

- Continuous service

Predictive maintenance

- Service on predicted problems

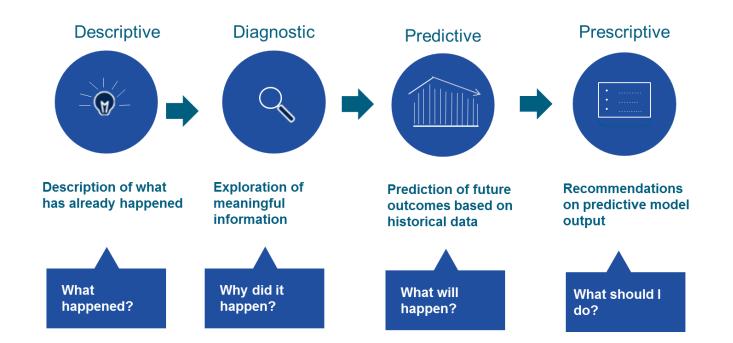
- Machine learning

Self-coordinating maintenance

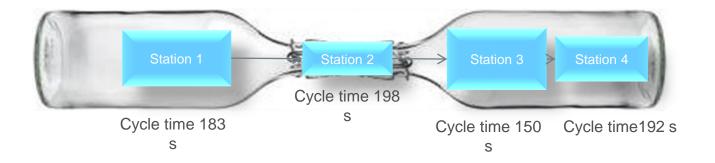
- Service when optimal from the entire system

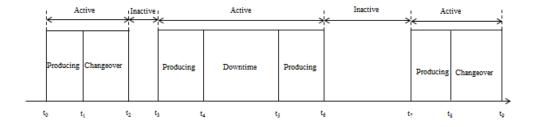
- AI on combined data

DATA ANALYTICS IN MAINTENANCE



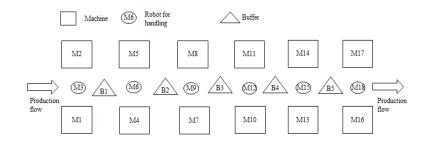
EXAMPLE FROM MANUFACTURING



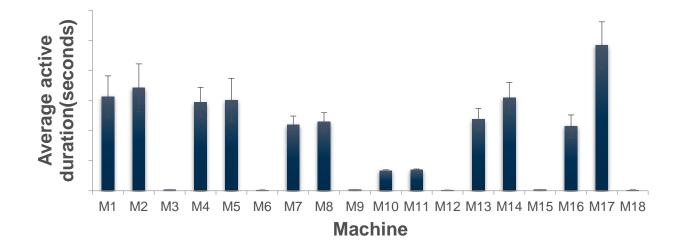


MES EXAMPLE

Production Area	Work Area	Date with Time	State of the machine
Line 1	M1	01-09-2014 06:28:02	Not Active
Line 1	M1	01-09-2014 06:28:25	Comlink Up
Line 1	M1	01-09-2014 06:29:20	Not Active
Line 1	M1	01-09-2014 06:29:34	Waiting
Line 1	M1	01-09-2014 06:29:34	Waiting
Line 1	M1	01-09-2014 06:42:46	Producing

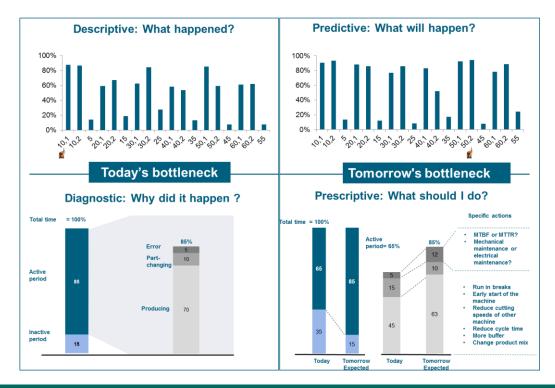


EXAMPLE FROM A SERIAL PRODUCTION LINE



- □ M17 is a primary bottleneck
- □ M2 could also be a primary bottleneck
- □ M17 and possibly M2 should be prioritized in maintenance and improvements

ANOTHER AUTOMOTIVE EXAMPLE WITH ALL STAGES



Example: Shifting bottlenecks algorithm implementation

Background

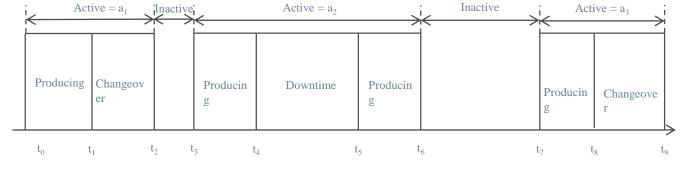
- Manufacturing companies collect a lot of machine data Consequence of digitalisation
- Production and maintenance engineers wanted to explore how AI could make,
 - Faster decisions
 - Better decisions
 - Confident decisions

Racl	kground
Dac	<u>serouna</u>

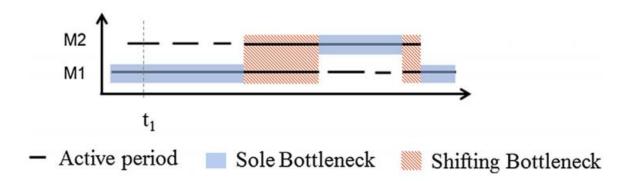
- Have to detect the bottlenecks from machine data
 - In real-time
 - Detect the shifting patterns in the bottlenecks

Shifting bottleneck detection method by Toyota Company

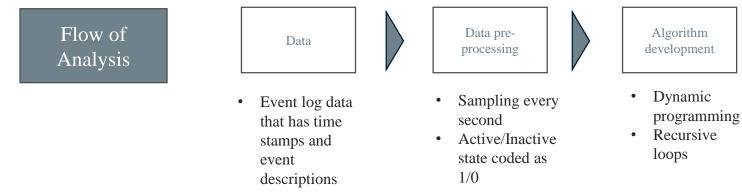
Concept and Approach



Method



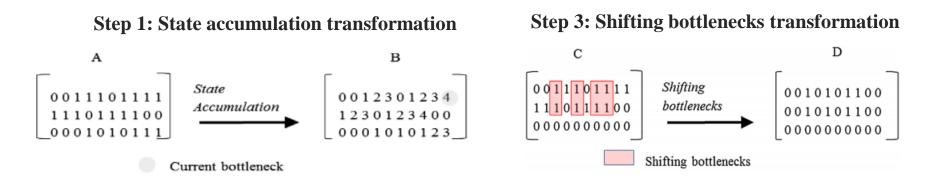
Example : Shifting bottlenecks algorithm implementation



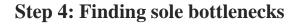
Impact

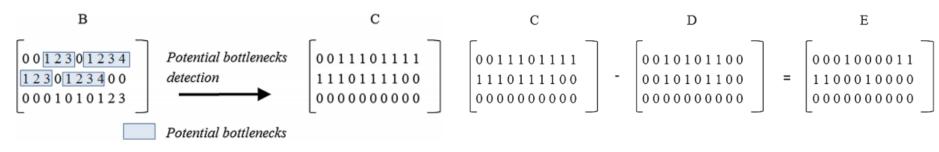
- Help maintenance and production engineers to prioritise improvement activities
- Produce more products within the same scheduled hours
- Lower costs

Example : Shifting bottlenecks algorithm implementation



Step 2: Potentials bottleneck detection transformation





PRESCRIPTIVE MAINTENACE

Systems level (MES-data)

Real-time observation and prediction of bottlenecks and critical resources

Systems level (MES-data)

Prioritize improvements and maintenance on future needs in critical resources

Equipment level (MES-data)

Real-time analysis and prediction of trends in failure frequencies and repair times

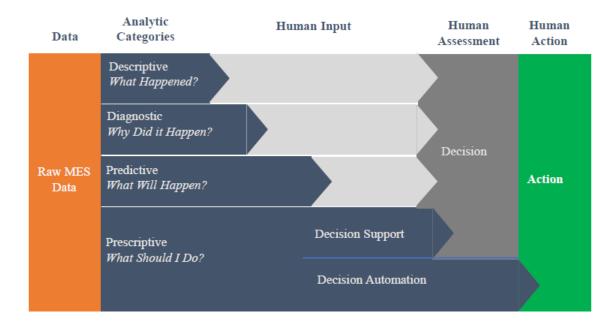
Sensor level

Detect patterns in alarm and sensor data

Combined MES and sensor level

Identify and predict root causes

AUTOMATED DECISION SUPPORT



SUMMIT – SMART MAINTENANCE TESTBED

- Algorithm development for Smart Maintenance
- Collaboration between data scientists, process experts, and maintenance researchers
- Evaluation of existing data sets and collection of new data
- Test of commercial software packages
- ✓ Scania case
- ✓ Volvo Cars case
- ✓ SSAB case
- ✓ Preem case
- ✓ Göteborg Energi case
- ✓ Microsoft software
- ✓ Siemens software
- ✓ Sigma integration
- ✓ KTH case and analysis
- ✓ Fraunhofer Chalmers Center algorithms
- ✓ Chalmers project management and algorithms

Virtual Development Lab - Chalmers

CHALMERS UNIVERSITY OF TECHNOLOGY